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In life, we measure length by cm, dm, m, etc; and measure 
weight by kg...

How do we quantify the scientific impact of a paper？
    - Citation
 Example of citation-based measures
    - The number of citations, the impact factor, etc.
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Distribution of the 
cumulative 
citations ten years 
after publication 
(c10) for all 
papers published 
in Cell, PNAS, and 
Physical Review B 
(PRB) in 1990.

Citation history of all papers 
published in Cell, PNAS, and 
Physical Review B (PRB) in 1990 
and acquired 50 citations 5 years 
after publication, illustrating the 
dierent long-term impact despite 
their equal early impact.
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also known as Barabási-Albert(BA) model, is designed to 
reproduce the degree distribution of complex networks.
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also known as Bianconi-Barabási(BB) model, besides the PA 
mechanism each node i has an initial fitness     capturing its 
unique likelihood to be cited in the future.

it helps explain why the degrees of some nodes with low initial 
degrees grow faster than others, even faster than the old nodes 
with high degrees.
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input: citation history of the target paper
 The citation probability 
 elaps time,
 fitness,
 current citations,
 aging function, P(·)
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2.4.1 PA
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Empirical validation of 
preferential attachment. 
Attachment rate measures 
the likelihood for new 
papers published in different 
years (color coded) to cite 
an old paper with   citations.
That is, for each year, 
measures the citations of 
each paper before this year, 
and attachment rate 
measures the average 
number of times each paper 
with   citations was cited in 
this year. The linearity of 
the curves offers evidence 
for preferential attachment.
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so, here is a question, how to estimate the three parameters
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 the survival function
 lifetime distribution function 
 the density function of the lifetime distribution
 hazard function
 cumulative hazard function
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Future life time at a given time    is the time remaining until 
death, given survival to age     , then the probability of death at or 
before age        : 
Therefore the probability density of future lifetime is:
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represents the number of events by time t, satisfying:
  
where         is a time dependent rate parameter.
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3.1. Fitting the original data
                                                   let         
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Citation history of four papers published in PR in 
1964, selected for their distinct dynamics, displaying 
a ‘jump-decay’ pattern (blue); delayed peak 
(magenta); attracting a constant number of citation 
over time (green), or acquiring an increasing 
number of citations each year (red).
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Yearly citation c(t) for a research 
paper from the PR corpus

Cumulative 
citations ct
for the 
paper in the 
left graph.
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We randomly selected two 
papers each year between 
1960 to 1970 from the PR 
corpus. Their citation 
histories are shown on the 
top panel.
Color code corresponding to 
the publication year. 
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Evaluating long-term impact. (A) Fitness 
distribution P(l) for papers published by Cell, 
PNAS, and PRB in 1990. Shaded area 
indicates papers in the l ≈ 1 range, which were 
selected for further study.(B) Citation 
distributions for papers with fitness l ≈ 1, 
highlighted in (A), for years 2, 4, 10, and 20 
after publication. (C) Time-dependent relative 
variance of citations for papers selected in (A). 
(D) Citation distribution 2 years after publication 
[P(c2)] for papers published by Cell, PNAS, 
and PRB. Shaded area highlights papers with 
c2∈[5,9] that were selected for further study. 
(E) Citation distributions for papers with 
c2∈[5,9], selected in (D), after 2, 4, 10, and 20 
years. (F) Time-dependent relative variance of
citations for papers selected in (D).
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where  
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In 1998, the IFs of Cell and NEJM were 38.7 and 28.7, respectively. Over the next 

decade, there was a remarkable reversal: NEJM became the first journal to

reach IF = 50, whereas Cell’s IF decreased to around 30.
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Using the training period     and     sampling citations, to predict 
the number of citations at a future time   
the expected increment of citations between          :

Hence, the expected citation at time    :
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Therefore, given a citation history, we can use the model to 
predict the probability for the paper to have    citations at the 
time    ,

Hence, the most probable future citation kp can be obtained 
from
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Illustrative example of P(kp) 
for a randomly selected 
paper. Different lines 
correspond to different 
testing period (Tp).
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the upper/lower uncertainty can be obtained by
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 Logistic Model

 Bass Model 

 Gompertz Model
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We selected papers published in 1960s in the PR corpus that acquired 
at least 10 citations in 5 years (4492 in total). The red curve captures
predictions for 30 years afterpublication for TTrain = 10, indicating that 
for our model 93.5%papers have z30 ≤ 2. The blue curve relies on
5-year training. The gray curves capture the predictions of Gompertz, 
Bass, and logisticmodels for 30 years after publication by using 10 years 
as training.
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4.1 RPP(Reinforced Poisson Process)

bayes formula: 
bring in conjugate prior to eliminate over-fitting.
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relaxation, Exponential reinforcement and Time Mapping 
process)
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now that different retweets can generate different contribution 
to PA, what about thinking of the triggering effect of each 
subsequent forwarding.

where v is the initial triggering strength,     is the triggering 
strength of each subsequent forwarding.
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where        is the retweeting probability of time t,     is the out-
degree of the ith retweeting node,           indicates the probability 
that the neighbor nodes(nodes which will retweet) of the ith 
retweeting node retweet the tweet.
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 I cannot find a dataset containing the complete perchasing data of a 
certain item.

 the visibility of the sales volumn may generate different PAs.
 serveral ways to modify the model:
1.consider different Network Growth Models
2.according to the special characters of user-item network ,  modify the model 
just like the SEHP did.
3.think about the triggering effect.
 

32



Ruiqi Yang

Thanks

DM
LESS IS MORE


